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ABSTRACT

This paper develops a special partitioning method for solving LP

problems with embedded network structure. These problems include many of

the large—scale LP problems of practical importance , particularly in the

f ields of energy ,  scheduling, and distribution. The special partitioning

method , called the simplex special ordered network (SON ) procedure,

applies to LP problems that contain both non—network rows and non—network

columns, with no restriction on the form of the rows and columns that do

not exhibit a network structure. These LP/embedded network problems

include as a special case multi—commodity network problems and constrained

network problems previously treated in the literature, by simultaneously

encompassing both side constraints and side activities.

The simplex SON procedure solves these problems by exploiting the

network topology of the basis, whose proper ties are characterized by means

of a specially constructed master basis tree . A set of fundamental ex-

change rules are developed which identify admissible ways to modify the

master basis tree, and hence the composition of the partitioned basis in-

verse. The simplex SON method implements these rules by a set of stream-

lined labeling algorithms, while maintaining the network portion of the basis

as large as possible , thereby accelerating the basis exchange step. As a

result, 12/embedded network problems can be solved with less computer

storage and significantly greater efficiency than available from standard

• 
linear programsing methods.

t 

Preliminary computational results are reported for an all—FORTRAN
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implementation of the simplex/SON algorithm called PNET/LP. The test

problems are real—world models of physical distribution and scheduling

systems. PNET/LP has solved problems with 6200 rows and 22,000 columns

in less than 6 minutes, counting all I/O , on an ANDARL V—6 with a FORTRAN

• G compiler.
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1.0 INTRODUCTION

The dramatic successes of the past several years in solving pure

network problems [2 , 3, 5, 6, 8, 19, 30, 41] have motivated consideration

of methods for solving more general linear programsing (12) problems

with embedded network structure. For example, in the realm of pure net-

works (capacitated minimum cost flow problems), the computational study

(21] demonstrates that special purpose network computer codes are 150—200

times faster than the state—of—the—art LP code, APEX III. Subsequent

studies of “singly constrained” networks (12 problems consisting of a net-

work plus one additional side constraint) demonstrated that specialized

methods also yield substantial computational advantages for problems that

do not exhibit pure network structures, but which are “almost networks.”

The papers [18, 20, 311 show that these problems can be solved 25—50 times

faster than APEX—Ill. Many practical 12 problems, however, contain em-

bedded networks with multiple side constraints and multiple side variables,

and so it is extremely important to determine whether an efficient special-

ized method can be developed for these problems. The purpose of this

paper is to describe such a method , called the simplex epecial ordered

network (SON) algorithm. The simplex SON algorithm is a primal basis

partitioning method that employs special updating and labeling procedures

to accelerate computations involving the network—LP interface. A pre—

liminary FORTRAN implementation of this method solves real—world physical

• distribution models 25—50 times faster than APEX—Ill, confirming that it is

possible to create a marriage of network and LP methodology that has ad—

A
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vantages for more general problems with embedded network structure.

For def initional purposes , we refer to an LP/embedded network problem

as a capacitated or uncapacitated linear program in which the coeff icient

matrix A can be characterized as follows. The A matrix contains in + q rows

and n + p columns which are ordered and scaled such that each column of

the m x a aubmatrix A consisting of the f irst in rows and n columns of
inn

A, has at most one +1, one —1, and zeros elsewhere. A major portion of

the LP literature has been devoted to problems in which: (a) in n — 0

(standard 12 problems); (b) p — 0 (multicouisodity networks and constrained

network problems); (c) p — 0 and the subuiatrix Amu contains only one non-

zero entry per column (LP/generalized upper bounding (GUB) problems); (d)

p — q 0 (pure network problems).

The success with special classes of 12/embedded network problems,

already noted , has led to speculations (10, 18, 21] that good results can

also be obtained by extending these ideas for problems where p and q are

less than a and in , respectively. Motivation for such an extension that

leads to a highly eff icient implementation has come from a number of the

major practitioners of linear programming including Harvey Greenberg,

Milton Gutterman, Alan Goldman, and A. C. Williams. In addition, the

members of SHARE, and a number of industrial and governmental agencies

that have large—scale 12/embedded network problems, have strongly stressed

the need for such a method. Several of these individuals and groups have

urged us to undertake such a development, leading to the results reported

in this paper. One of the important applications to which the simplex SON

method is relevant is the national energy model PIES , developed by the

~ -~ ~~~~~~~~~~~~~ —- —5-———— —- - - — 5-—---- —~~~ J
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3

Federal Energy Agency [24]. In the PIES model, q — 0, m — 2500 , n — 4400 ,

and p — 4500.

In general , it is our experience that most large—scale 12 problems

involving production scheduling, physical distribution, facility location,

personnel assignment, or personnel promotion contain a large embedded

network component, sometimes consisting of several smaller embedded net—

works. Coupling constraints (q > 0) arise, for example, from economies of

scale, limitation on the total number of promotions, capacity restrictions

on modes of transportation (e.g., pipelines, barges), limitations on

shared resources, multiple criteria, or from combining the outputs of sub—

divisions to meet overall demands. Coupling columns (p > 0) arise from

activities which involve different time periods (e.g., storage), production

alternatives (e.g., refinery activities), or which involve different sub-

divisions (e.g., assembly). For example, Agrico Chemical Fertilizer

Company has physical distribution and facility location problems where

p a O ,ma6200, n 2 2 ,000, and q 20.

1.1 History of Methods for Solving Special Classes of LP/Embedded Network

Problems

There are two basic approaches which have been employed to develop

specialized techniques for the above special classes (cases b, c, and d)

of LP/embedded network problems--decomposition and partitioning methods.

Decomposition approaches are further characterized as price—directive

or resource—directive. The papers [3 , 11, 12, 13, 16, 43, 44 , 45, 47]

give variations of price—directive decomposition and the papers [3, 14,

34, 40, 42] are resource—directive decomposition.

~
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Partitioning approaches can be divided into partitioning block

diagona l structured linear problems or general partitioning to exploit

embedded substructure within general linear problems. Because they

share the same basic principles , we will briefly review the literature

of both.

The general idea of partitioning block diagonal structured programs

was originally proposed by Dantzig [l4a] and in a slightly different

setting, by Charnes and Cooper [9, vol. 2). Later Bennett [7], ffar tman

and Lasdon [26], Heesterman [28] , Kaul [33], and Weber and White [46]

independently developed primal solution procedures of more general

scope. The paper by Hartinan and Lasdon [26] contains an excellent de-

scription of this approach and procedures for handling the working in-

verse. Further, their paper contains computational results of such an

algorithm. Grigoriadis and Ritter proposed a dual method [25].

Dantzig and Van Slyke [15] then proposed their well known “GUB”

specialization of the primal simplex algorithm for the case where each

block contains only one row. The general block diagonal procedures were

further ref ined and a~ecialized for multiconuodity network problems by

Saigal [38]. This specialization involves carrying a working basis in-

verse whose size need not exceed the number of saturated arcs. Hartman

and Lasdon [27] developed efficient procedures for updating this working

basis inverse. However, neither Saigal nor Har tman and Lasdon discuss

how this procedure may be efficiently implemented. Maier [36] refined

their procedures and initiated implementation discussions. Kennington,

et al [1, 29 , 30] streamlined the implementation procedures of Maier

and conducted extensive computational testing.

________________ 
_____________ ~~~~~ ~~~~ . —
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Charnes and Cooper [9, vol. 2] originally proposed partitioning to

exploit embedded substructure within general linear problems in their

Double Reverse Method. Bakes [4] independently proposed an analogous

algorithm when p — 0. Klingman and Russell [35] developed additional

specializations for exploiting pure network substructure and Hultz and

Klingman [31, 32] for generalized network substructure (i.e., where each

column of A may have at most two arbitrary non—zero coefficients).

These papers initiated the first in—depth discussion of implementation

techniques. The paper by Glover, Karney , Klingman , and Russell [20]

presents the first computational results of such an algorithm for pure

network substructure and the paper by Hultz and Klingman [31] presents

the first computational results for generalized network substructure.

The work by McBride [37] and Graves and McBride [23] on Factorization

subsequently redeveloped and refined the general procedures of [9, l4a].

Further, McBride’s dissertation [37] discussed specialization of these

procedures for exploiting pure network substructure.

1.2 Form of the Simplex SON Method for LP/Embedded Network Problems

The simplex SON method constitutes a highly efficient way to modify

and implement the steps of the primal simplex algorithm for the completely

general case of embedded pure network problems (where p > 0 and q > 0).

The efficiency is the direct result of exploiting the pure network portion

A of the coefficient matrix and the network—LP interface by special
inn

labeling and updating procedures.

The starting point for the algorithm, following the natural design of

partitioning methods, is to subdivide the coeff icient matrix into network

L —_~~~~~~~~~~~~~~~~~~~~~~~~~~ ——___— —~~~~~~~~~.•.— —
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and non—network components. By reference to this subdivision, a basis in-

verse compactification procedure is employed that maintains a working basis

inverse, V 1
, whose dimension equals in + q less the rank of the basic sub—

columns of A associated with A .  The size of V~~ therefore varies

dynamically. This is one of the major features of this algorithm that

distinguishes it from partitioning algorithms designed for constrained

networks [31, 32 , 35].

The basic variables not associated with V 1 
are stored in a special

graph form called the master basis tree. The development of the master

basis tree and the procedures for using it to efficiently replace arith-

metic operations constitute the principal contributions of this paper.

We sh~~ that the operations normally performed by using the full basis

inverse can instead be performed by special labeling and graph traversal
—ltechniques [5] applied to the master basis tree and its interface with V

The organization of the simplex SON method maintains the network portion

of the basis as large as possible at each iteration, thereby enabling

these labeling and list processing procedures to operate on a maximally

dimensioned part of the basis . This in turn minimizes the size of V ’.

The resulting advantages over the standard LP implementation approach

are several. First, the graph traversal operations reduce both the amount

of work needed to perform the algorithmic steps and the amount of computer

memory required to store essential data. Second , the algorithm orients the

execution of operations in a manner that is best suited to the design of

computers (making extensive use of linked list structures , pointers , and

logical operaions in place of arithmetic operations.) Third, the method

is less susceptible to round—off error and numerical inaccuracy. Most of

W5- 1~~~~~~~~~~ .-
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the operations are performed using original problem data and only the

residual portion of the basis inverse associated with V 1 
is subject to

the slower customary updating, with its greater attendant susceptibility

to round—off error and numerical inaccuracy. (The graph traversal pro-

cedures also automatically eliminate checking or performing arithmetic

operations on zero elements.)

2.0 PROBLEM NOTATION

The LP/embedded network problem and its dual may be stated mathematic-

ally as follows :

Primal

Minimize c x  + c x  (1)
n f l  p p

subject to:
A x + A  x = b  (2)m n n  nip p in

A x + A  x — b  (3)q n n  q p p  q

0~~~x ~.- u (4)n n

O Ix  ~~u (5)
p p

Dual

Maximize w b + w b — yu - ~Vu (6)
m m  q q  n p

subject to

w A  + w A  -y~~~c (7)
m mii q q n  ii

w A  + w A  - ‘V~~~c (8)m m p  q q p  p

w , V
q 
——unrestricted (9)

V �  0 (10)

_ _ _  — - -- —5 — —--5’ --5’— - - - -
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where A is (m x n ) ,  A is (in x p), A
q~ 

is (q x n ) ,  and A
qp 

is (q x p).

The remaining vectors are conformable vectors whose subscripts indicate

their dimensionality.

Each column of the matrix A contains at most one +1, one —1 , andsin

zeros elsewhere. Thus A corresponds to i pure network problem. For

this reason the (2) portion of the LP/embedded network problem will be

referred to as node constraints or simply nodes. The x~ variables will be

referred to as arc variables or simply arcs. The arcs will be further

classified as ordinary arcs , which have exactly two non—zero entries in

A , and as slack arcs, which have exactly one non—zero entry in A
mu inn

In graph terminology ,  a simple graph G(v,E) is a finite set of ver-

tices V and a finite set of edges E connecting the vertices. Each element

of E is identified with an unordered pair of distinct elements of V.

Schematically, each edge connects two distinct vertices, which are then

considered to be adjacent. If the edge set E is expanded to contain edges

which have both endpoints incident on the same vertex or multiple edges

connecting the same two vertices (parallel edges), then G(V,E) is called a

general graph. If each edge of the general graph has an implied direction

then the graph is sometimes called a di graph or directed graph, the vertices

are referred to as nodes , and the edges are referred to as arcs.

The underlying pure network problem Amu defines one or more connected

digrapha as follows. Each row of A corresponds to a node and each column

to an arc. The —1 entry in a column indicates the node where the arc begins

(from node) and the +1 entry in a column indicates the node where the arc

ends (to node). If a column has only one non-zero entry (a slack arc)

the endpoints of the arc are incident on the same node. This representa—

_-“-~ 
- ~~mJII 5- IIr ’ — — - - 
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9

tion of Ama may consist of several disjoint connected digraphs.

Because each arc is associated with a variable, it has lower and

upper bounds and an objective function coefficient.

3.0 BAS IS STRUCTURE

Using the standard bounded variable simplex algorithm, a basis B

for the LP/embedded network problem is a matrix composed of a linearly

independent set of column vectors selected from the coeff icient matrix

A
A -

A

- 

qn qp

The variables associated with the column vectors of B are considered to

be basic variables X
B 
and all others are non—basic variables at their

lower or upper bound.

Without loss of generality, it will be assumed that A has full row

rank. Any basis B for the LP/embedded network problem will, therefore ,

be a nonaingular matrix of order (in + q) x (in + q). Clearly, any basis

matrix B may be partitioned as follows:

xB2

B l B
B — ~~~~~~~ (11)

B21 l B 22

where B11 is a nonsingular submatrix of Ama• Thus the basic variables

x.. associated with the I I columns are exclusively arc variables.
i B ~,i i

The basic variables x.. associated with the I I coli~~ e may also con—
1322J

tam arc variables. (XBl and are written above their associated
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components of B in (11).)

Based on the indicated partitioning of (11), the basis inverse

B
1 
may be written as follows:

—l B~~1 + 
~~~~ 

B12 V 1 B21 B~~1 — B11 B12 V
1

B — ——— — - (12)
V 1 B B 1 V 1

— 

21 11

—lwhere V — B22 
— B21 B 11 B12 .

The motivation for this way of partitioning (11) is to factor out

the submatrix B11 of A and thereby exploit its inherent triangularity by

viewing and storing B11 as a digraph. This handling of B11 has several ad-

vantages: (1) the graph contains only the nonzero components of B11, (2)

any operations involving B11 may be performed by traversing the associated

digraph using appropriately designed labeling techniques , (3) since B11 con-

tains only original problem data, numerical errors are reduced.

The only matrices required to generate the basis inverse, as seen f rom

(12), are B, B~~1 and V~~. The efficiency of generating the needed compo-

nents of B ’ in performing the steps of the simplex method depends on the size

and techniques used to store B11, the labeling procedures used with B11 to

eliminate matrix multiplications involving B~~1, and the procedures used to

maintain the position of B.

The developments of the following sections show how to handle these

considerations effectively.

3.1 Graph Representation of Bfl

As in the case of A , B11 defines a digraph. The structure of this

digraph is a set of disjoint spanning trees, each of which is augmented

by an arc whose from node and to node are the same node in B11 Such an

L:~ — 
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arc of B11 will be called a simple loop. (This structure implies that

B11 is a block diagonal matrix and each block is triangular. The blocks

each consist of a spanning tree plus a simple loop. Thus, each block is

a quasi-tree.) This structural proper ty of B11 follows directly f rom

the fact that B11 is a square nonsungular matrix and that B11 is a sub—

matrix of A . Thus each column of B contains at most two non—zerome 11
unit entries of the opposite sign.

A column of B11 corresponding to a simple loop may be of two types

according to whether the associated column of A is a slack arc or an
sin

ordinary arc. If the Ama column Ia an ordinary arc, then the partition-

ing of B has split this arc between B11 and B21—— that is, one of its

unit entries lies in B11 and the other in B21. Because of this, the algo-

rithm stores and uses B11 by keeping a larger digraph than the one corres-

ponding to B11. This larger digraph, called the master basis tree, con-

tains every node in Ama plus another node called the master root; thus,

it always contains in + 1 nodes and in arcs. The nodes of this tree that

correspond to rows of B21, since they are external to the nonsingular

network structure of B11, are called externalized roots (ER ’s).

The master basis tree contains all of the ordinary arcs in B11.

Simple loops in B11 are contained in the master tree in a modified form.

If the simple loop is a slack arc of A , then the simple loop is re—

placed by an arc between the master root and its unique node. If the

simple loop is an ordinary arc in A
~~ 

it is replaced by an arc between

its nodes in Ame• Such arcs, thus, join ER’s to nodes in 
~l1~ 

To complete

the master basis tree each ER is connected to the master root by an ex-

tennaliz.d arc (EA). Figure 1 graphically depicts a master basis tree.

_ _ _ _   

-5—-- -
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Master Root

Externalized arcs -

Nodes in B21 ER ER ER

Nodes in

B11

Figure 1 — Master Basis Tree

It is importan t to stress that the master basis tree is a concept ual

scheme designed to allow the simplex/SON algor ithm to eff ic ient ly  main-

tain the partitioning of B while keeping the B
11 

portion at maximum size

during each iteration. This construction should not be confused with the

simple model device sometimes employed in pure network settings, where a

pseudo root is added for the purpose of giving each slack arc two end-

points. The connections represented by the master basis tree include

both network and “extra network” structures (mediated by externalized

roots and arcs), and the rules for operating on these structures are of a

very special type.

______________________ __________ —- - 
. - 
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To understand the function of these rules, it should be noted that

a multiplicity of cases must be considered when executing a basis ex-

change step. For example, if an arc variable is to be added to the

basis , or transferred from x82 to z~~, the endpoint (s) of the arc may

consist of (1) two nodes in a single block (quasi—tree) in B11, (2) nodes

in different blocks (quasi—trees) in B11, (3) a node in B21 and a node

in B11, (4) two nodes in B21, (5) a single node in B11, (6) a single node

in B21 (where cases (5) and (6) apply to slack arcs of Ama)~ A similar

multiplicity of cases applies to removing an arc from the basis, and the

combinations that result from both adding and removing arcs are still more

numerous.

The use of the master basis tree permits all of these cases to be

unified in a particularly convenient fashion. The rules characterizing

the conditions for adding and deleting arcs, and specifying the appro—

priate restructuring of the master basis tree, are as follows.

3.2 Fundamental Exchange Rules

1. An arc of x32 
can admissably be added to the B11 portion of the

basis, without deleting another, if an only if its loop in the master basis

tree contains at least one EA. (Such a 1oop can contain at most two EA’s.)

f 

The updated form of the master basis tree then occurs in the following

manner: (a) Add the new arc and drop any EA from the loop. (b) Change

the status of the ER formerly met by the dropped BA to that of an ordinary

node, transferring its row from the B21 to the B11 portion of the basis.

-5-—- — - - - — - .
~~ 
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2. An arc can be deleted from B11 
(removing a component of xBl)

without adding another as follows: (a) Identify the node of the

selected arc that is farthest from the master root. (b) Change this

node into an ER node by moving this node to B21 and attaching it to the

master root by a newly created EA. At the same time delete the selected

arc from B11.

3. An arc can be added to B11 and another simultaneously removed

from B11 as follows: (a) If the loop in the master basis tree created by

the added arc includes the arc to be dropped, then the exchange step is

handled exactly as an exchange step of an ordinary network basis. (Thus

no EA’ s are added or dropped , and no nodes alter their status as ordinary

nodes or ER nodes.) (b) If the loop in the master basis tree created by

the added arc does not include the arc to be dropped , then the exchange

may be performed as a two—part process that applies the preceding rules

1 and 2 in either order (as long as the exchange is valid).

4. B11 and B21 can be restructured , without adding or deleting basis

arcs XB1~ 
by an exchange step that  drops any EA and adds another EA to any

node of the isolated tree (excluding the master root) created by dropping

the first. This step Is accomplished by interchanging the ER status and

ordinary node status of two nodes which swaps their corresponding rows in

B11 and B21.

It should be remarked that the EA’s have a special interpretation in

these rules. Since the master basis tree spans all nodes of A , andma
always contains the same total number of arcs (including EA’s), the number

of EA’s corresponds to the number of non—arc variables in the basis (ele-

ments of xB2) that are required to give the basis full row rank for the

- - - - -

_ _ _
_ ‘5 /

_
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I
A portion of the problem.

It may also be observed that the A portion of each column ofma
(the portion associated with the ER’s) contains at most one non-

zero entry. In particular, this partial column is the zero vector if

its associated arc (element of xB1) does not meet an ER, and otherwise

contains a —1 entry if :he from node of the arc meets an ER and a +1

entry if the to node of the arc meets an ER. No slack arcs of A can

contain entries in B21, or else their B11 columns would be zero vectors.

However, it is possible for slack arcs of Ama to have entries in

B22, and also for ordinary arcs of Ama to have both of their non—zero

entries in 
~22 (meet ing two ER’s at their endpoints). In this case

such a slack arc or ordinary arc, when added to the master basis tree,

creates a loop that includes an LA, and thus can be moved from XB2 to

ZE1 by the Fundamental Exchange Rules.

The validity of the Fundamental Exchange Rules is expressed in the

following result.

Theorem 1: B11 is maintained as a nonsingular matrix by the addition and

deletion of arcs if and only if the Fundamental Exchange Rules are applied.

Proof: The master basis tree maintains a linearly independent super-

structure which, by rooting each block (quasi—tree) of 
~ll 

at an ER, and

each slack arc of A in at the master root, assures that 
~1l 

is non—

singular. Further, it is readily verified that each operation prescribed

by the Fundamental Exchange Rules preserves these structural relation-

ships. The primary requirement is to determine that none of the possible

ways of modifying 
~ll ~ 

overlooked. We will not trace the details of a
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full itemization of cases , since they are somewhat tedious , but simply

rema rk that each of the alternatives can be directly observed to be

handled correc tly by the unifying construction of the master basis

tree. QED.

It may be noted that Rule 4 of the Fundamental Exchange Rules , while

not directly concerned with  the addition and deletion of arcs , can affect

the density of 
~2l’ and indirectly the composition of V. The density of

any row of 
~2l associated with Ama can be minimized (reduced to a single

non—zero , if any non—zeros exist) by a single application of Rule 4 to

swap the status of the associated ER node with that of the last node of

its subtree (i.e., swapping a row of B11 with a row of B12) ,  using the

last node function 151. Note that by successively applying this pro-

cedure each ER could be structured so that it has only one arc of Ama
incident on it .

Mo re important and compelling is the issue of whether there exists

an easily specifiable way to apply the Fundamental Exchange Rules to

maximize the dimension of B11 ( the number of components of xBl ) or whether ,

due to the influence of the non—network basis structure , a particular

configuration for B11 cannot be augmented except by a complex strategy of

removing current arcs and adding new ones. The resolution of this issue ,

which relies on the fact that maximizing the dimension of B11 is equi-

valent to minimizing the number of EA’s in the master basis tree, is ex-

pressed in the following result.

Theorem 2: The dimension of B is maximized (and the number of EA’s

minimized) by successively applying Rule 1 of the Fundamental Exchange

~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~  
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Rules until no more arcs are admissible to be added by this rule.

Proof: Suppose instead a master basis tree is obtained that cannot admit

the addition of any arc by Rule 1, yet that another master basis tree

exists with fewer EA’s. Since any tree can be transformed into any

• other by some sequence of pairwise arc exchanges, producing a tree at

each stage, we can find some tree T1 in such a sequence which allows no

swap reducing the number of BA’s, and another tree T2, obtained by a

swap in T1, such that a swap in T2 will reduce the number of BA’s. (Any

single swap that reduces the number of EA’s is an application of Rule 1.)

Thus, the tree with a smaller number of EA’s is two swaps away from T1.

But a basic result of tree exchanges is that if two trees are two swaps

apart, then the swaps can be executed in either sequence, producing a

tree at each step (see, e.g., (22]). This proves the theorem by contra-

diction. QED.

Theorem 2, which applies either to adding incoming arcs to or

transferring arcs from XB2 to XBl~ 
also makes it possible to maintain B11

at its maximum dimension at each iteration of the primal simplex method ,

as will be demonstrated subsequently. For the special case in which the

LP/embedded network problem has no non—network constraints (though any

number of non—network variables), the following observation is useful.

Corollary 1: If the nodes of Ama span all the rows of A (i.e., if Aqn

is empty), then every basic arc variable can be included in x31.

Proof: Any basis arc variable that cannot be included in x
81 must create

a cycle that does not include an BA. This implies linear dependence in

the arc variable columns of B. These columns must contain zeros in B
12

~~~~~~~
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and B22 ; otherwise their arcs would intersect an ER and their loop would

contain an EA. Then B must be singular, contrary to the fact that it

is a basis.

The value of this Corollary is that it allows all basic ne twork arcs

automatically to be included in XB1 for LP/embedded network problems

without side constraints (q 0) ,  avoiding the work of checking to see

whether the inclusion of any particular arc is admissible.

3.3 Labeling Algorithms for Accelerating Basis Computations

Drawing on the network topology of B , as embodied in the construction

of the master basis tree , we turn now to the determination of special algo-

rithms for processing this master tree . The algorithms are specifically

designed to carry out computations involving B 1 that are required in the

steps of the primal simplex method (pricing out the basis , determining

the representation of the incoming variable , e tc . ) .  In particular , we are

concerned with ident ifying the most effect ive way to take advantage of

the network structure of B11 embedded in the partitioned inverse.

The principal computations of the primal simplex method that involve

B~~j  can be segregated into three classes concerned with computing~

(1) 
~~~~ 

G , (2) HB~~ 1, and (3) HB1~ C. By allowing H and G in each of

these classes to be either a vector or a matrix (and in the case of a

vector , to have either single or multiple non—zero components), it is

possible to express the generic forms of all of the simplex method calcu—

lations involving 811 in the partitioned inverse. In this section we

provide the procedures capable of performing these calculations in a

manner that most fully exploits the structure of 
~11~ 

Significantly, it

_________ 5- 
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turns out that the most effec tive list processing and labeling procedures

differ in each of the several alternative cases. The list structures and

functions used in these procedures are those commonly employed in network

optimization. For completeness , we include explicit descriptions of

• these lists.

To provide a common visual frame of reference , the root node r

may be viewed as the highest node in the tree with all the other nodes

hanging below it. The tree is then represented by keeping a pointer list

which contains for each node w (other than the root) the unique node v

above node w which is connected to w by an arc. This upward pointer is

called the predecessor of node w and will be denoted by p(w). Corres—

pondingly, node w is called an immediate successor of node v. For con-

venience, we will assume that the predecessor of the root, p(r) , is zero.

Figure 2 illustrates a tree rooted at node 1, the predecessors of the

nodes, and other functions to be described subsequently. The predecessor

of a node is identified in the p array. For example, the predecessor of

node 16 is node 5.

Figure 2 illustrates additional tree information expressed in terms

of node functions, which are often used in computer implementation proce—

dures for solving network problems. The first of these functions, the

thread function, is denoted by t(x). This function is a “downward” tree

pointer. As illustrated in Figure 2 by the dashed line, function t may

be thought of as a connecting link (thread) which passes through each

node exactly once in a top to bottom, lef t to right sequence, starting

from the root node. For example, in Figure 2, t(l) — 2, t(2) — 4,

t(4) — 5, t(5) — 16, t(16) — 8, etc.

_ _ _ _ _ _  -5 -  - - 5 ’ — - -  
~“_•~

___
~

7_ •_ - 5- - -

•1 4..’ ~ 5 ’

-5-



- - - - — --5 - - - - - 

20

Predecesso r p (x)

Node potential d(x)

Thread t (x )

Reverse t hread rt (x)

Depth dh(x)

Cardinalit y c (X )
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FIG. 2-  TREE LABELING TECHNI QUES
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Letting n denote the number of nodes in the tree , the function t

satisfies the following inductive characteristics:

a) The set {r,t(r),t2(r),... ,t
t1

~~~(r)}  is precisely the set of nodes

of the rooted tree, where by convention t2(r) — t(t(r)), t 3 
—

etc. The nodes r,t(r),... ,t
k l

(r) will be called the antecedents of node

t~~(r) .

b) For each node i other than node t° 1(r ) ,  t(i) is one of the

nodes such that p(t(i)) — 1, if such nodes exist. Otherwise , let x de-

note the first node in the predecessor path of i to the root which has

an immediate successor y and y is not an antecedent of node i. In this

case , t( i)  — y.

c) t’~(r) — r; that is, the “last node” of the tree threads back to

the root node.

The reverse thread function , rt (x) , is simply a pointer which points

in the reverse order of the thread . That is , if t(x) — y, then rt(y) — x.

Figure 2 also lists the reverse thread function values.

The depth function, dh(x) , indicates the number of nodes in the pre-

decessor path of node x to the root, not counting the root node itself.

If one conceives of the nodes in the tree as arranged in levels where the

root is at level zero , and where all nodes “one node away” f rom the root

are at level one, etc., then the depth function simply indicates the

level of a node in the tree. (See Figure 2.)

The cardiraality function, c(x), specifies the number of nodes con—

tam ed in the subtree associated with node x. By the nodes in the sub—

tree associated with node x, we mean the set of all nodes w such that the

predecessor path from w to the root contains x. (See Figure 2.)
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The last subtree node function , f (x ) , specifies the ~de in the

subtree of x that is encountered last when traversing the nodes of this

subtree in “thread order. ” More precisely , f (x )  — y where y is the

unique node in the subtree of x such tha t t (y )  is not also a node in the

subtree of x. (See Figure 2 . )

Note that both the domain and the range of each of the above dis-

crete functions consist of a subset of the problem nodes and thus are

independent of the number of arcs in the LP/embedded network problem.

Since the master basis tree contains m + 1 nodes, a one—dimensional array

of size m + 1, called a node length array, is allocated to each function

during computer implementation . The procedures for updating the values

of the functions when the tree is reconfigured are discussed in [5 , 16].

In computing a particular vector x B~~1G , the components of x

are associated with columns of B11 via the equation B11x — G , and are

thus associated with arcs. Similarly , the components of the vector

W HB~~~ are associated with rows of B11 via the equation H and

are thus associated with nodes. Consequently , in computing these vectors

we will let:

Xk — the component of x associated with the basis arc k (whose end—

point s are nodes k and p (k ) )

Wk the component of W associated with node k.

These latter definitions will be modified only to allow x and W to repre-

sent matrices rather than vectors, in which case each row of x will be •
thought of as a row of variables associated with the corresponding arc,

and each column of W as a column of variables associated with the corres—

ponding node.

• - •~~
. 
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Finally , we will refer to a basis arc as conf ormable if its Ainn
direction agrees with its basis predecessor orientation (i.e., the from

node of the arc lies at the predecessor node and the to node of the arc

lies at the successor node) , and refer to the arc as nonconformable

otherwise.

A. Algorithms for computing x — B jj G (solving for x in the equation

B11x — G).

Al. C is a column vector with one non—zero element. Let C0 equal the

non—zero element of C, associated with node k.

Al.1 Let q — p(k). Let x.~ — C0 if the arc is conformable, and

let x.k — —C0 if the arc is nonconformable.

Al.2 If q is a root (either an ER or the master root) stop. All

non—zero elements of x have been assigned the proper value. Other-

wise, let k q and return to Al.l.

A2. G is a column vector with two non—zero elements. Use the depth or

cardinality function in conjunction with the predecessor so that the

trace from the two nodes that correspond to the non—zeros of G can be

interrupted at their intersecting paths .

A2.l Apply A]. to each non—zero , independently. Stop by the

criterion of Al.2 if the paths do not intersect first.

A2.2 If the paths intersect before either meets a root, temporarily

stop at step Al.2 when q is the intersection node, and redef ine 60

to be the sum of the two non—zeros of C. If G~ is zero , stop. Other—

wise, continue Al to its termination.

I
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g A3. G is a column vector with more than two non—zero elements.

Option 1. Apply a generalized form of A2 , not proceeding beyond

any path intersection until all paths meeting at that point have been

traced to it. The value of C0 at that point becomes the sum of the

non—zeros on the starting nodes of the paths meeting there. (This

can be useful if most of the paths are known to intersect only at

roots.)

Option 2. (Generally preferred.) Let C
i 
denote the jth element of

G (whether non—zero or not). Using the last node function , identify

the last node of the master tree , and designate this node to be node

k.

A3.1 If p(k) is not a root, execute Step Al.l f or G0 replaced by

and let G
q 

— G
q 

+ G
k. (A3.l can be skipped if G

k 
— 0 thus calcu-

lating only non—zero values.)

A3.2 Let k — rt (k) . If k is the master root , stop. Otherwise,

return to A3.l. (Note in this procedure , one may avoid checking

whether p(k)  is a root in A3.l by allowing “fictitious” variables

X
k 

to be associated with EA’s.)

A4. C is a matrix (and hence x is also a matrix). Let Ci denote the ith

row of G and let x~ denote the ~th row of x. Then apply algorithm A3,

Option 2.

B. Algorithms for computing W — HB ]1 (solving for W in the equation

W811 — H.)

Bl. H is a row vector with one non—zero element . Let H.K denote the non—

_________________ --——— —-- -— 5- —
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thzero element of H, which occurs in the k position, associated with the

arc k of the basis tree joining nodes k and p(k).

81.1 Let H - H. if the arc is conformable and let H — —H. other—
0 K 0 K

wise. Let i k.

B1.2 Let W — Hi 0

81.3 If, by the last node function, node i is the last node of the

subtree headed by node k, stop. All non—zeros of W have been gener—

ated (with the value H
e
). Otherwise, let i — t(i)  and return to

81.2.

82. H is a row vector with more than one non—zero element. If the sub—

trees containing the arcs associated with the non—zeros of H are known to

be disjoint, apply El independently to each subtree. Otherwise, select

any node k of the master tree (possibly an ER or the master root) which

heads a subtree whose arcs “contain” all non—zeros of H. Definitionally,

for the following, let 0 if node i represents a root node (the master

root or an ER), and let H~ — 0 if arc i represents an externalized arc

(which may always be regarded as conformable).

Option 1. Let — 0 and i — t(k). Let k* denote the last node of

the subtree headed by k.

82.1 Let q — p(i). Then let

• W — V + H if arc i is conformablei q i

V — V — H if arc i is nonconformable.
i q i

I 
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B2.2 Let i — t(i). If i — k*, stop. All non—zero elements of W

have been determined. Otherwise, return to 82.1.

Option 2. (Generally preferable if H has few non—zeros.)

Define two lists, a subtree header list SH(j) and a last node

list LN(j), j  1, . . .  ,J. To begin , let SH(l) — k and let LN(l) — k*,
the last node in the subtree headed by k. Let Wk — 0 and i — t(k).
B2.3 Let H — H if arc I is conformable and let H — —H other-

0 1 0 1
wise.

B2.4 Let W1 H0. I f i = k * , g o to B2.7 .

B2.5 Let i t(i). If H
1 

= 0, go to B2.4. Otherwise, let H —

H + H if arc i is conformable and let H H — H if arc I is
0 i 0 0 i

nonconformable .

B2.6 If i — k*, let W
I H and go to B2.7. Otherwise, let SH(J) — I

if the last node in the subtrce headed by I is k* (updating the header

list to name the most recent node whose last node is k*). Otherwise,

let J — J + 1, let SH (J) i, let k* denote the last node in the

subtree headed by I , and go to 82.4.

B2 .7 If J 1, stop. All non—zero components of W have been deter-

mined . Otherwise , let J J — 1, let k (SH(J), let k* — LN(J) and

let H — W . Then go to 82.5.o k

B3. H is a matrix (hence W is also a matrix) . Let H~ denote the

column of H and let W~ denote the 1
th 

column of W. Then apply algorithm

B2, Option 1 or Option 2. (If many of the columns of H are 0 vectors,

Option 2 is preferable. If , further, non—zero columns of H have few non—

- ‘ 
-
~
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zero elements, then a variant of Option 2 can be applied, particularly

by using pointers that name only non—zero elements.)

Algorithms Al, A2, B1, and B2 Option 1 are direct counterparts of

algorithms already used in network optimization methods. Algorithms A3,

A4, B2 Option 2, and B3 are new, designed to handle the special require-

ments of the LP/embedded network problem, with the same types of computa-

tional advantages that have derived from their simpler predecessors. One

of the principal features shared by all of these algorithms, which pro-

vides a primary basis for exploitation by the method of the next section,

is given in the following result.

Theorem 3: The value assigned to a variable at any iteration of any of

the preceding algorithms is the correct solution value for the indicated

equation and is not modified at any subsequent iteration.

Proof: The fact that a solution value, once assigned, is not changed

thereafter, can be ascertained by tracing the steps of the algorithms.

That this value is correct, in the case of the new algorithms, follows

from the structural characteristics of the master basis tree already es-

tablished, and from the list processes employed in these algorithms (see

e.g., [5]).

The usefulness of the “once and for all” determination of values in—

- dicated in Theorem 3 manifests itself in the simplex SON optimization pro—

cedure by providing the basis for three additional algorithms which,

together with the algorithms preceding, yield the ability to accelerate

the calculation of more complex matrix products. The basis of these algo—

rithas lies in identifying the appropriate manner to accumulate a matrix

_ _ _ _  ± -I-I~
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product at intermediate stages , conserving time and memory. The form

of these algorithms is as follows.

C. Algorithms for computing A — HBh C + Z0

Cl. C is a column vector and H is a matrix. Begin with Z equal to the

column vector Z0.

Cl.i Compute x — B~~1 G by the appropriate member of the A algo-

rithms (depending on the structure of C).

Cl.2 As each non—zero element x1 of the column vector X is computed ,

let Z — Z + x1H1, where H1 is the 1
th 

column of H.

C2. H is a row vector and C is a matrix. Begin with Z equal to the row

vector Z0.

C2.l Compute W — HB~~1 by the appropriate member of the B algorithms .

C2.2 As each non—zero element W~ of the row vector V is computed,

let A — A + WiGi~ 
where C1 is the j th row of G.

C3. G and H are both matrices . Begin with Z equal to the matrix Z0.

Option 1.

C3.l Compute x C by algorithm A4.

C3.2 As each non—zero row x
1 

of x is computed , let

Z
k 

- Z
k 

+ H.klxi for each row of Z where H.~ is the

k
th element of the ith column Hi of H.

Or alternatively,

Z~ — Z~ + Hixjj for each column of Z where is the

~th component of x~.

~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Option 2.

C3.3 Compute V — by algorithm B3.

C3.4 As each non—zero column W~ of V is computed, let

— + W~~C1 for each row Zk of Z where Wkj is the

kth element of W~ and C~ is the

row of C.

Or alternatively,

z~ — + W
1
G
1~ 

for each column Z~ of Z where C
1~ 

is

the ~th component of G~.

The validity of these algorithms follows directly from the validity

of the A algorithms and B algorithms, and from the admissible options for

organizing matrix computations. A special consequence of these methods,

which is uniform throughout all calculations of x, W, or Z, is as follows.

Corollary 2. The most efficient versions of the A, B, and C algorithms,

when either G or H is a matrix , result by storing G by row and storing

H by column.

Proof: Immediate from the structure of the algorithms.

This outcome has noteworthy implications for the unified implementa—

tion of the A, B, and C algorithms in the simplex SON precedure. In

particular, the identity of C in the simplex SON procedure (when C is a

matrix), ii characteristically B12, and the identity of H (when H is a

• matrix), is characteristically 821 or the augmented matrix (~ ). Thus,

by Corollary 2, it is preferable to store by row and B21 by column .

This constitutes a departur. from the methodology of previous compact

basis procedures. That is , the result that the most effective coaputa— 
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tion arises by storing different components of B differently, provides a

new organizational strategy for compact basis methods.

With these foundations, we are now ready to specify the complete form

of the simplex SON optimization method.

4.0 ALGORITHMIC STEPS

This section describes in detail the basic simplex operations as

they pertain to the LP/embedded network problem. These operations in-

clude initialization, checking for optimality, finding the representation

of the vector entering the basis, the basis exchange step, and calculat-

ing updated dual variable values. As noted in Section 3, it will be

assumed that the basis is partitioned as in (11), that 
~ll 

is stored using

a master basis tree, and that V ’ is the only portion of the basis in-

verse that is being kept.

4.1 Initialization

An initial basis B for the L?/embedded network problem can be ob-

tained by selecting a set of variables whose columns in Ama are linearly

independent and then augmenting these columns by appending slack or

artificial variables to the problem that result in satisfying the con-

straints (2) and (3). Columns for artificial variables whose unit

entries occur in the first a rows can be treated as an augmentation of

the A matrix.an

Given an initial basis, Fundamental Exchange Rule 1 can be used to

partition the basis so that the dimensionality of B11 is maximum.

Next , V — B22 
— 821 81~ 

B12 is computed by algorithm C3, letting

- - --5-— - - _ _____s_____ ___ . — ;~a L~a. -~ - -  . ._~~—
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— 822, H — —B21, and G — 812. V 1 is, then, calculated.

Once a basis has been selected and partitioned, the complementary

slackness conditions can be used to obtain dual variable values which

satisfy:

B
11 ~12

(w ,w ) I.————— (c 1,C 
2~ 

(13)
m q  B ‘B21 22

where c31 
and are the vectors of objective function coefficients asso—

ciated with x
81 

and x
82
. In expanded form, (13) becomes :

w
a
Bll + wq821 — CB1 (14)

wmBl2 + VqB22 c82 (15)

Equations (14) and (15) may be rewritten as follows:

V
m
Bli CB1 

— V
qB21 

(16)

—l —1Vq (B22 
— B21B ll~2l ’ — c82 

— CB1B 11B12 (17)

Noting that V — B22 
— B21B11B21, (17) can be stated as:

Wq — (c82 
— c

81BI1
B12)V

’ (18)

w
q 
could be recomputed at future iterations using (18) and algo—

ritha C2 to find _c81B11B12. However, as q (the number of constraints

in (3)) increases, the number of operations involved in this process

becomes prohibitive. Thus, for large q, it is better to treat wq as

an extra row of V~~ and update it at each iteration.

Given an initial value of w , (16) provides an excellent framework
q

for the calculation of w
~
. Once the right hand side of (16) has been

calculated, wa may be computed by algorithm 82.
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4.2 Determination of Optimality

thLet P — I ‘‘ I denote the j column vector of the coefficientj  ~Pq , j j
matrix A, where P is associated with constraints (2) ,  and P ism,j q , j
associated with constraints (3). Optimality of both the primal and

dual solution occurs when the dual solution (as well as the primal

solution) is feasible. A determination of this can be made by first

calculating the updated objective coefficients cjt associated with each

primal column vector as follows:

— c — (w P + w P ) (19)j  j  m m ,j q q ,j

Dual feasibility is achieved when the following conditions are satisfied

for all j:

C~~� O X
J

O

c~ 0, X
j 

basic (20)

c~~�O~~x~~~ u~.

If any one of the conditions In (20) is not satisfied, then the asso—

ciated primal column vector may be selected to enter the basis.

4.3 Finding the Representation of the Entering Vector

1Pm 1
Let P5 — ‘~~ denote the column vector selected to enter the basis

L q, 5i rci j 1
matrix. The representation ci — I ~ I of P5 in terms of B must be com—LaB2 J
puted so that the vector to leave the basis can be determined. This

computation involves solving the following system of equations:
— 

— B1~ ~as 
+ 

~~~~~~~~~ 

B12 V~ B21 B1~ ~a,s 
— 

~~1l 
B12 V

1 Pq 5  (21)

~B2 
— V~~(—B 21 B~~i ~m,s 

+ Pq~~)• (22)

taSw&~_ e . c-~V~ -- A , .s . ’ ~~~~~ - 5- ’” 
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Substituting cLB2 into (21) yields

~
Bl — 

~~il ~“m,s 
— B12cx

82
). (23)

It is thus efficient to first calculate and then to use this

result to find a
31
. To compute a32, first compute the quantity within

the parentheses of (22) by algorithm Cl and then multiply by V ’. To

compute use algorithm A3.

Using this method, a ratio test should be performed inmediately on

before the computation of is made since degenerate pivots occur

frequently in network problems and, therefore, unnecessary computations

could be avoided.

4.4 The Basis Exchange Step

r p l
Let 1r 11’q:ri denote the vector selected to leave the basis. This

column is identified by the minimum ratio calculation. The updated form

of this column, B 1 
~r’ 

is a unit vector, whose non—zero entry occurs

in the pivüt row. To execute the basis exchange step, it is necessary

to identify the segment of this row in 3 1 
that affects the updating of

V 1. There are two cases:

1. The outgoing variable is an element of xB2. The relevant seg—

ment of the pivot row is simply the row of V 1 that corresponds to the

outgoing variable.

2. The outgoing variable is an element of xB1. In this case, the

pivot row segment that affects the updating of V ’ does not lie in V 1

itself, but is contained in the upper right quadrant of the partitioned

B 1. Consequently, from (12), this row segment has the form
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- -  —

—e1 B~~1 B12 V
’ (24)

where c
i 
is the unit row vector with a 1 in the position corresponding

to the row of B 1 associated with the outgoing variable . The computa-

tion of (24) may be accomplished by first computing —e~ B11 B12, using

algorithm C2 (and algorithm 31 in t~e initial step). The result is

then multiplied by

Once the appropriate pivot row segment is thus determined, the

updating of V 1 (and of W
q
) proceeds in the customary manner by a pivot

step restricted to this portion of B ’.

The final type of operation of the simplex SON method is the modi-

fication of V 1 
by the addition or deletion of a row or column.

4.5 Changing the Dimensionality of V 1

The dimensionality of V~
’ is determined by the dimensionality of x32

(hence also of xBl)~ 
and this in turn rests on the application of the

Fundamental Exchange Rules. As previously noted , the initial composition

of xBl and x32 can be determined by successive application of Rule 1 to

maximize the dimension of 
~jl’ 

and consequently to minimize the dimension

of V 1. Once the simplex SON method begins with this condition satisfied,

Theorems 1 and 2 imply that the basis exchange step can maintain this

condition at each iteration by the transfer of at most one element between

xBl and z12 (depending on the configuration of the master basis tree,

which may be modified by the addition of an arc corresponding to the in—

coming variable or by the deletion of an arc corresponding to the out-

going variable).

• ~- • .
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F In particular, by applying Rule 1, 2, or 3 of the Fundamental

Exchange Rules to the incoming and outgoing variables (if one or

both of them correspond to arcs), and by applying Rule 1 to a

potential transfer variable (an element of xB2 corresponding to an arc)

——or , if appropriate, applying Rule 3 to the transfer variable and the

outgoing variable——the resulting reconfiguration of the master basis

tree will automatically maximize the dimension of B11 and minimize the

dimension of V 1
. In each case, will be modified by the addition

or deletion of at most one row and at most one column (in each combina-

tion that leaves V~~ square). The obj ective , then , is to show how this

modification of V 1 
can be brought about.

The deletion of a row or column of V 1 may be accomplished in a

straightforward manner. Therefore we address the operations involved in

the addition of such a vector. (In each case, the additions should take

place before the execution of the pivot steps, allowing the pivot step

to determine their newly updated forms.)

Adding a row to V 1. 
The only row that may be added to V

1 
is that

of the pivot row, and then only if it does not already lie in V 1 (i.e.,

only if the outgoing variable is an element of xBl). The way to identify

and calculate this updated row is by (24). Note that the addition of a

row to V 1 does not entail any additional computation, since in this

case the form of the pivot row must be determined in any event.

• Adding a column to V 1. Any column of B ’ not already overlapping

V~~ must lie in the left half of the partitioned basis inverse (12).

Consequently, the updated and original form of this column is given,

- - 

~ _ --—--~~~ 
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ro 311 e~respectively, by 0 — L e ]  and e~ = [ o]’ where the unit e1~~~nt of
and occur in the same position. With this identification, we may com—

pute 0 from the explicit representation of the partitioned basis inverse

(12) in precisely the manner used earlier to compute the basis repre-

sentation a of the column for the incoming variable, in particular,

the form of 0 is obtained by substituting 0Bl’ 0B2~ 
e
k 
and 0, respectively,

for cxBl, a32’ ~m,s’ 
and P

q 5  
in (22) and (23). This yields

— l
0Bl B 11 (e

k 
— B12 0B2~ 

(25)

and

—1 —l0B2 V B21 B 11 ek (26)

The calculation of °B2 proceeds by first applying algorithm Cl to com-

pute B21 B~~1 ek (and using algorithm Al in the initial step), followed

by multiplication by V’1. Then, unless both a row and a column are

simultaneously to be added to V 1, it is unnecessary to compute °31
since 0B2 is the portion of B t required .

On the other hand, if a row is to be added to V~~ as well as a

column, it is necessary to compute the pivot row element in 0Bl’ Thus,

letting e
i
denote the unit row vector as previously defined in the genera—

tion of the updated pivot row, this element of O
3~ 

is given by

ei B11 
(e
k 

— B12 ~B2~ 
(27)

This can be computed by algorithm C2, using algorithm Bl in the first

part, and noting that the matrix stipulation for C may be replaced by the

stipulation that C is a column vector.

d 
_ 
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The use of the A , I , and C algorithms in these calculati ons materiall y

accelerates th . steps of th . simplex SON method, following the indicated

prescriptions .

5.0 IM2L~ (ENTATION AND (LMPU T~ -
‘ tONAL TESTING

5.1 Implementation

We have implemented a prelimina ry FO~~ RAN version of the simple, ~~~

method for capacitated 12 pr oblems where A — 0. This t ’— ~ore code ,

called PNET/LP, employs super—sparsity ( i . e . ,  it aLo ~ es only ;he uriqt ~

P non—zero elements of A) and keeps V ’ in product form . ~~~~~ also

ploys the predecessor, thread, reverse thread, cardi.,--1~ty, anJ 1,s~

node functions.

PNET/LP has been run on a CDC 6600, a CYBEP- 74, and an .:ia~~ L V—6.

The computer memory space utilized by PNET/LP !ep.nds on se eral factors

including (i) the computer, (ii) the number of unique non-zeros in the

- 
original problem, (iii) the number of unique non—zeros in the ETA file.

Consequently, it is impossible to specify in simple terms an exact

formula for the amount of memory required by the program. An approximate

formula for IBM 370 and AMDAHL computers is 46 bytes per network row,

40 bytes per LP row, 12 bytes for each arc variable (i.e., for each

element of Zn) plus 4 bytes for each non—zero coefficient in its LP

rows, and 8 bytes for each non—arc variable (i.e., for each element

of x~) plus 4 bytes for each non—zero coefficient in its 12 rows.

In addition, PNET/LP keeps a variably dimensioned working space array

which contains the pool of unique non—zero elements of A and V ’.

________—- - --
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PNET/LP first optimally solves the network portion of the 12/

embedded network problem. This optimal network basis is then augmented

by appropriate slack or artificial variables to form a starting basis

for the entire problem. During the solution of the network problem,

PNET/LP employs the modified row minimum start (19], and the standard

Phase I—Il method for handling artificial variables. If the optimal

network basis is augmented by artificial variables, PNET/LP minimizes

the sum of infeasibility in Phase I for the full LP/embedded network

problems.

5.2 Computational Testing

In order to evaluate the computational merits of PNET/LP , we tested

the following three classes of problems: (1) pure ne twork, (ii) GUB/LP

problems, and (iii) embedded network/LP problems where Amp — 0 and m is

large relative to q.

The first class, pure network, was selected in order to determine

the relative efficiency of PNET/LP to a state—of—the—art special purpose

code for solving network problems. To conduct our comparison we used

the network code PNET—I of [19] and modified its pivot criterion to

correspond to that of PNET/LP. Our analysis disclosed that PNET—I is

only twice as fast as PNET/LP on pure network problems. This is sur—

prising in view of the fact that PNET— I is 150—200 t imes faster than

commercial LP codes such as APEX—Ill and t4PSX—370. However, since PNET/LP

is designed to exploit network structures, it is relevant to identify

the reasons for the difference in speed between PNET/LP and PNET—I .

These reasons are as follows:

• - -
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1. PNET/LP uses double precision flowing point arithmetic while PNET_ T

uses integer arithmetic.

2. PNET/LP, due to its use of super—sparsity and its ability to solve

any general 12 problem, stores the original problem data in a more com—

• plex manner than PNET—t. Consequently, PNET/LP requires more time to

access the original problem during basis exchanges and pricing opera-

tions.

3. For numerical reasons, PNET/LP uses the standard Phase I—It method,

while PNET—I uses the BIG—M method. Computational testing [19] has

shown that the BIG—M method is substantially more efficient for pure net-

work problems. Because of these factors, the difference in solution speed

between PNET/LP and PNET—I is much less than might be expected. In

general, we found that PNET/LP is able to solve network problems with 2000

nodes and 9000 arcs in less than 15 seconds using a FORTRAN C compiler on

an ANDAIIL V6.

The second class of problems, GUB/LP problems , was selected because

generalized upper bound constraints can be viewed as a very simple form

of network constraints. Further, since the CUB feature has been dropped

from most of the major commercial LP codes , we felt that some evaluation of

PNET/LP on GliB problems would be of interest to practitioners. Our test

problems were furnished by a major airplane manufacturer. The GliB portion

represents the assignment of plane—types to routes. The typical problem

contained 80 CUB rows, 14 non—network rows, and 130 arc variables. On

these small problems PNET/LP was four times faster than MPSX/370.

The third class of problems i. the one which PNETILP is specifically

designed to solve. Most of our computational experience with this problem

~~~~~~~~~~~ U- -~~ - - - - - • --
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class is for real problems which were solved by Agrico Chemical Company.

These problems involve the determination of optimal production and dis-

tribution schedules, and were solved on an AMDAEL V—6 using a FORTRAN C

compiler. Unfortunately , it was not possible to compare PNET/LP on

these problems to another code because of the proprietary nature of

the problem data. (In addition, it is difficult to obtain free computer

time on an IBM 370/168 or an ANDARL V—6 for the purpose of benchmarking

against MPSX, MPSX—370, or MPS—III.) Table I contains typical solution

statistics on Agrico’s three largest product models.

Subsequent to this testing, Agrico acquired a FORTRAN H compiler.

Agrico has determined that the FORTRAN H compiler reduces total run
- 

time, including all I/O by approximately 45%. Consequently, the times in

Table I would probably be reduced by 45% using the FORTRAN H compiler .

Furthermore, Agrico’s comparison of PNET—I and PNET/LP using the H compiler

indicates that PNET/LP is only 20% slower than PNET—I.

TABLE I

SOLUTION STATISTICS ON PNET/LP

No. of Constraints No. of Variables PNET/LP*

No. of Network No. of Non—Network
Rows E m Rows q Arcs n Non—Arcs p Total Time** Total Pivots

3179 20 15,831 40 103 seconds 10,248
3442 6 21,898 12 180 seconds 17,817

6192 10 21,939 20 351 seconds 10,345

* ANDARL V—6 with FORTRAN C compiler
- 

- ** Including all I/O processing

U—
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In order to provide some comparison of PNET/LP to a commercial IP code

on the third class of problems, we solved one randomly generated problem on

the CYBER—74 computer using PNET/LP and APEX—Ill. Table II contains the

problem specifications and indicates that this problem can be solved at least

70 times less expensively with PNET/LP than with APEX—I ll.

TABLE II

PNET/LP VS. APEX-Ill

No. of Constraints No. of Variables PNET/LP APEX—I ll

No. of Network No. of Non—Network
Rows in Rows q Arcs E n Non—Arcs p

1000 1 5000 1 $3.l1* $210.68**

*~~ffiARL V—6 with FORTRAN C compiler

** Including all I/O processing

While the above computational testing is quite limited, it indicates

that the simplex SON algorithm may be extremely efficient for solving large

embedded network/LP problems. At this point, however, we would caution the

reader that it would be premature to extrapolate these results to other

problems and in particular, to other problem classes. An exhaustive com-

putational study is required before any general inferences can be drawn.
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Il Ail s till Ta paper develops a special partitioning method tor solving LI’ problems Wit?
~mbedde~ . - ..w~rk structure. These problems include many of the large—scale LP problems
)f practic ’i .~iiportance ,particular1y in the fields of energy, scheduling, and distribu—
:ion. The bpecial partitioning method, called the simplex special ordered network (SON)
,rocedure, applies to LP problems that contain both non—network rows and non—network
:olumns, with no restriction on the form of the rows and columns that do not exhibit a
ietwork structure. These LP/embedded network problems include as a special case multi—
:ommodity network problems and constrained network problems previously treated in the
Literature, by simultaneously encompassing both side constraints and side activities.

The simplex SON procedure sol~ea these problems by exploiting the network topology o
the basis, whose properties are characterized by means of a specially constructed maste~
~asis tree. A set of fundamental exchange rules are developed which identify adaissibli
iays to modify the master basis tree, and hence the composition of the partitioned basi
inverse. The simplex SON method implements these rules by a set of streamlined labe1in~
ilgorithas, while maintaining the network portion of the basis as large as possible,
thereby accelerating the basis exchange step. As a result, 12/embedded network problem
~an be solved with less computer storage and significantly greater efficiency than ava i
ible from standard linear programming methods.

Preliminary computational results are reporte for an all—FORTRAN implementation of

( 

the simplex/SON algorithm called PNET/1.P. The test problems are real—world models of
Ihysical distrib~ition and scheduling systems. PNET/LP has solved problems with 6200
rows and 22,000 columns in lees than 6 minutes, counting all I/O, on an .AI4DANL V—6 with
i FORTRAN C complier.
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